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Abstract

This paper investigates the dynamic stability of a beam moving over two bi-lateral supports using finite element analysis,

with essential conditions applied via the penalty function approach. Computational advantages of the penalty-based

approach compared to that of the Lagrangian multipliers are highlighted in the context of such unique problems in

dynamics. Penalty-based numerical formulation for the moving beam results in a system of second-order differential

equations with periodic coefficients. The governing equations are reduced to state-space form and Floquet–Lyapunov

theory is applied to investigate dynamic stability of the moving beam. The instability characteristics are studied for a range

of amplitudes and frequencies for sinusoidal longitudinal motions of the beam. In addition to the predictions using

Floquet–Lyapunov theory, further instability regions based on first and higher approximations are identified. The

instability results for periodic motion compare well with previous research and new results are presented taking into

consideration the effect of damping. The penalty-based finite element formulation is found to be effective when applied to

this class of dynamics problems. The avenues for further research are also highlighted.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Linear systems with constant parameters exhibit resonance whenever an excitation frequency is same as the
natural frequency. In such ordinary resonance cases, the amplitudes of a dynamic system increase linearly or
follow the power law in most cases. Systems that are dependent on time are described by differential equations
with periodic coefficients, i.e. the system properties such as stiffness, inertia and damping tend to change with
time. Such time-dependent systems are characterized by parametric resonances that occur due to a
combination of parameters that lead to instability. Generally, parametric instabilities are centered about a
union of several smaller regions of frequencies. These aspects render parametric resonance as ‘‘more
dangerous’’ or ‘‘useful’’, compared to ordinary resonance and hence prediction of instability regions is of
immense importance in engineering applications [1–5].
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

aL
b longitudinal acceleration of the beam,

m/sec2

a0, a1 y ab, damping constants
A amplitude of periodic motion, m
[C (t)] global damping matrix
D distance between the supports, m
E elastic modulus, N/m2

{F(t)}, {P (t)}, {R (t)}, {R* (t)} load vectors
Fx axial force, N
I moment of inertia, m4

[K(t)] global stiffness matrix
[Ka] time dependent geometric stiffness ma-

trix due to axial periodic force
[Ka], [G], [Kl] constraint matrices
[Kf] flexural stiffness matrix
lj length of an element
L length of the beam, m
[M] global mass matrix
[Pflo] floquet matrix

[PT] state transition matrix
{q} generalized coordinates
T time period, sec
T time period
a, l penalty and Lagrangian multiplier con-

straints
ai weights for the Gaussian quadrature
ap penalty multiplier
ap real part
g beam mass per unit length, kgm
g mass per unit length, N/m
lc combination resonance frequency, rad/s
li, lj natural frequencies, rad/s
lreal, limg real and imaginary parts of L
op imaginary part
o longitudinal oscillation frequency, rad/s
x Gauss–Legendre points
c damping ratio
L eigenvalues of the transition matrix
P̄ total potential
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Systems with periodic coefficients are seen in many engineering applications such as aero-elasticity and
structural dynamics [6,7,12]. There are several techniques that could be used to solve the system of equations
with periodic coefficients. The most common techniques are Hill’s method [8], perturbation techniques [9],
harmonic balance [6], multi-blade coordinates [10] and Floquet–Lyapunov theory [3,4,11]. Explanation on
Floquet–Lyapunov theory and related topics on solutions of differential equations with periodic coefficients
can be found in Refs. [3,4]. The two key aspects of the theory are the existence and uniqueness of solution to
linear differential equations with periodic coefficients and stability of the obtained solution [33–40].

The stability of rotor dynamic and aero-elastic problems using Floquet–Lyapunov theory has been a subject
of extensive research for example [2,12]. There have been several attempts in the past that studied axially
moving beams in rotation [13–15]. Such classes of problems fall in an altogether different category since one
end boundary condition remains restrained in all degrees of freedom.

Perhaps less explored is the instability problem of a flexible beam moving over two bilateral supports, which
has not been covered extensively in previous research. Only a few known attempts have studied the dynamics of
a finite flexible beam moving over two bi-lateral supports [1,16–18]. The significance of moving beam problems
has been highlighted in the literature in association with design of robot manipulators, band saw blades and
computer tapes, to mention a few [19–21], Tan et al. (1993). The emphases in previous research have always been
on closed form solutions and the use of alternate techniques such as assumed modes that are complex in terms of
formulation [1,16,22,23]. Buffinton and Kane [1] as well as Lee [16] used the assumed modes approach for
investigating the moving beam response. One of the main limitations in using assumed modes technique is to
effectively incorporate change in cross-section area as in stepped beams [1,24] studied the dynamic stability of
moving beams using assumed modes method. However, their technique did not include damping effects.

It should be noted that Lee [16] also presented some results on stability of axially moving beams and
unsuccessfully tried to compare the results with that of Buffinton and Kane [1]. Previous publications [18]
details these grossly incorrect interpretations made by Lee. Thus, Lee’s interpretations on dynamic stability
for the longitudinally moving beam are not considered for comparison in the present study.

The nature of the essential conditions renders this problem challenging to be approached using classical
finite element method. As the location of the supports changes with time, the finite element-based model
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should be capable of enforcing the support conditions. Using a classical finite element approach, the
incorporation of these time-dependent conditions is achieved by having a node at these support locations.
Since the basic vibration problem of a moving beam is a space–time problem, the space domain can be divided
into finite elements and the governing equations are derived. Then direct time marching is the standard
procedure for solving in the time domain [25]. Zienkiewicz and Taylor [27] brought out the limitation of this
approach with the requirement of large time steps and increased computational storage. Deriving element
shape functions to accommodate such time-dependent effects is a laborious task, if not impossible. This is
especially true when the number of supports is large.

Sreeram [17] and Sreeram and Sivaneri [18] were the first to address the response problem [excluding
stability] using hp-finite element approach with essential conditions applied via the Lagrangian multipliers.
One of the key aspects in Ref. [18] is that the displacement boundary conditions are not forced by having
nodes at support locations, rather, by means of Lagrangian multipliers. However, the main limitation
associated with the Lagrangian multiplier approach is the ill-conditioning of the system matrices which tend to
be positive semi-definite.

For problems requiring the evaluation of dynamic stability, the method of Floquet–Lyapunov is
particularly suited and valid for large amplitudes [1,6]. This method requires the reduction of second-order
differential equations to the first-order or the state-space form. Due to the presence of zeros, the Lagrangian
multiplier method presents computational difficulties in reduction to the desired state-space form. The choice
for penalty method over the Lagrangian multiplier method is that the former approach does not introduce
additional unknown variables and order of the system equations is not altered. Using the latter approach,
numerical difficulties arising due to presence of zero diagonal and off-diagonal elements in mass, damping and
stiffness matrices could be avoided. Besides, using the penalty formulation the system matrices are positive
definite subject to appropriate choice for penalty numbers [26,27].

Even though a few authors mentioned previously studied the dynamics of axially moving beams, no known
attempts have investigated the dynamic stability in detail using finite element approach. There is a need for a
finite element-based model to address such unique problems in dynamics from the perspective of both
response and stability, and is addressed in this paper. A penalty-based formulation is presented here for the
moving beam problem. Also, the formulation includes some form of artificial damping in the model unlike
approaches presented in Refs. [1,16,18]. In particular, the effects of distance between the supports, amplitude
variation and damping on the dynamic stability characteristics are investigated.

2. Moving beam problem

The basic problem of an axially moving beam [17] is considered here. Fig. 1(a) shows an Euler–Bernoulli
beam with overhang resting on two supports. Frame of reference X– Y represents the inertial frame such that
the support P is at the origin. The beam bb0 of length L moves in the X-direction relative to supports. The axial
motion of the beam is described using XF (t) in Fig. 1(a).

The finite element formulation representing the beam dynamics, however, is presented based on the moving
frame (x, y) with the inclusion of axial inertia effects. The axial force Fx in the current problem causes the
longitudinal rigid body acceleration of the beam and is applied at the left end (marked by *) as shown in Fig. 1(a).
This axial forcing function is same as adopted by Lee and Sreeram [16,17]. The beam is divided into several
p-elements (Fig. 1(b)) and the shape functions were derived using the Legendre polynomials and is given in detail
in Ref. [18]. The axial motion of the beam is described using the function XF (t) and its derivatives. The finite
element formulation, however, is presented based on the moving frame (x, y) with the inclusion of axial inertia
effects. The inertial force plays a significant role in altering the stiffness matrix as the beam moves periodically.
The inertial force distribution is maximum at the left end of the beam and zero at the right end [16,18].

Fx ¼ �

Z L

x

gaL
b dx, (1)

Fx ¼ �gaL
b ðL� xÞ. (2)
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Fig. 1. Moving beam: (a) overhung beam with time-dependent boundary conditions and (b) beam finite element.
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3. Finite element formulation

The dynamical equations of motion for the beam include flexural stiffness due to bending matrix and time
dependent geometric stiffness matrix due to axial periodic force. A brief overview of the finite element
formulation is presented next.
3.1. Beam finite element

In this section, the approach adopted for deriving shape functions for a p-version finite element is
summarized [17]. Choosing orthogonal polynomials as the basis for building shape functions is convenient
during numerical integration wherein the orthogonality property is exploited. Several previous publications,
most notably, Hodges (1983), have recommended the use of orthogonal polynomials.

The beam in Fig. 1(b) is divided into a number of p-elements. The jth element of length lj is magnified
in figure to describe its internal structure. The jth element consists of (m�2) nodes numbered {1, y, m�2 }.
The zeros of Legendre polynomial coincide with the location of internal nodes. The jth element has
m degrees of freedom as the end nodes {1, m�2 } have rotational degrees of freedom. A local
coordinate xj and a non-dimensional coordinate x are located at the center of the element as shown in
figure; this is assumed to vary from �lj

�
2 to lj

�
2 and x varies from �1 to +1. The transformation between xj

and x is given as

x ¼
2xj

lj

. (3)

The deflection v(x) over the element is described by

v xð Þ ¼
Xm�1
i¼0

aiPi xð Þ, (4)

Pi (x) are the Legendre polynomials of order i and ai are the undetermined generalized coordinates. In the
matrix form

v xð Þ ¼ Pi xð Þ
� �

faig. (5)
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The solution of ai needs m equations. Combining the displacement and slope degrees of freedom in matrix
form

P0 �1ð Þ P1 �1ð Þ � � � Pm�1 �1ð Þ

P00 �1ð Þ P01 �1ð Þ � � � P0m�1 �1ð Þ

P0 x2ð Þ P1 x2ð Þ � � � Pm�1 x2ð Þ

..

. ..
.

� � � ..
.

P0 þ1ð Þ P1 þ1ð Þ Pm�1 þ1ð Þ

P00 þ1ð Þ P01 þ1ð Þ P0m�1 þ1ð Þ

2
66666666664

3
77777777775

a0

a1

a2

..

.

..

.

am�1

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
¼

v1
2
lj

v01

v2

..

.

..

.

2
lj

v0m�1

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

(6)

or

L½ � af g ¼ qe

� �
. (7)

The generalized displacements can be expressed as

v xð Þ ¼ P xð Þ½ � L½ ��1 qe

� �
. (8)

The shape functions are given by

Hi xð Þ ¼ P0 xð ÞP1 xð Þ � � �Pm�1 xð Þ½ � Li½ �
�1. (9)

The shape functions in Eq. (9) are used to generate the system matrices and are discussed next.

3.2. Formation of element matrices

The elastic strain energy due to bending over jth element in terms of the local coordinate is given as

Ke
f

h i
¼

Z lj=2

�lj=2
EI H 00
� �

H 00
� �

dxj. (10)

The strain energy due to the periodic axial force (Eq. (2)) on the element is given as

Ke
a

� �
¼ �aL

B

Z lj=2

�lj=2
gðL� xÞ dq

� �
H 0
� �

H 0
� �� �

dxj . (11)

From the kinetic energy of the moving beam, the mass matrix for the jth element is given as

Me½ � ¼

Z lj=2

�lj=2
g dq
� �

Hf g Hb cfqgdxj , (12)

or, in terms of the Gauss–Legendre quadrature the bending stiffness, time dependent geometric stiffness
matrix and mass matrices are given as

Ke
f

h i
¼

8

lj

	 
3X
Ng

i¼0

aiEI H 00 xð Þ
� �

H 00 xð Þ
� �

, (13)

Ke
a

� �
¼
�2aL

B

lj

XNg

i¼0

aig L� xi
b þ

li
j

2
ð1þ xÞ

" #( )
H 0 xð Þ
� �

H 0 xð Þ
� �" #

, (14)

Me½ � ¼
lj

2

XNg

i¼0

aig H xð Þ
� �

H xð Þ
� �

. (15)

The type of problem dictates whether or not damping matrices for a given system can be formed from energy
considerations (e.g. damping due to aerodynamic effects). A procedure developed by Banks and Inman [41]
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considers several types of damping effects such as air damping, Kelvin–Vogit damping, time and spatial
hysteresis. Appropriately, the damping constants will also need to be evaluated by experiments.

Such a comprehensive damping model is beyond the scope of this paper. Instead an approximation based
on Caughey series is used. From Wilson and Penzien [42], the Caughey series for the formation of damping
matrix is given as

½Ce� ¼ ½Me�
XN�1
b¼0

ab ½M
e��1 ½Ke

f � þ ½K
e
a�

� �h ib

. (16)

Assuming Rayleigh damping

½Ce
� ¼ a0½M

e� þ a1 ½K
e
f � þ ½K

e
a�

� �
. (17)

The constants a0 and a1 are evaluated for an assumed damping ratio as

fcrg ¼
a0

or

þ a1or


 �
; r ¼ 1; 2 . . . n, (18)

or

c1

c2

( )
¼

1

2

1

o1
o1

1

o2
o2

2
664

3
775 a0

a1

( )
. (19)

As the beam moves relative to supports, the essential conditions are that at any given instant the
displacements at the location of supports are zero. Sreeram and Sivaneri [18] used Lagrangian multipliers
for satisfying these essential conditions. The main limitation of Lagrangian multipliers are the introduc-
tion of additional unknowns and ill-conditioning of system equations and are discussed in the next
section.

4. Mixed formulation for the moving beam

Generally, the boundary conditions are of Dirichlet type or essential boundary value problems (e.g. ux ¼ 0)
or Neumann type such as qF

�
quy ¼ 0 specifies a natural boundary condition [26,28]. For the satisfaction of

these boundary conditions, two approaches based on mixed formulation are presented here, i.e. the
Lagrangian multiplier and penalty functions. A comparison is drawn between the two approaches highlighting
the computational advantages in choosing the penalty function-based approach for the stability of the moving
beam problem. The computational advantages can be readily seen by considering two cases of time-dependent
conditions are considered, (a) a fixed–free beam moving over supports and (b) a free–free beam moving over
supports (Fig. 2).

4.1. Lagrangian multiplier method

The Lagrange’s method of undetermined multipliers searches for a saddle point by means of minimizing
the total potential [26]. Generally, in most cases the system matrices are non-singular and positive definite.
v = 0, ∀t

v1(t) = 0 v2(t) = 0

1 2(a) (b)

Fig. 2. Moving beam with fixed and free boundary conditions.
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For a general problem in dynamics including damping effects depicting cases (a) and (b) can be expressed as

M 0

0 0

� �
€q

l

� �
þ

CðtÞ 0

0 0

� �
_q

l

� �
þ

KðtÞ Kl

KT
l 0

" #
q

l

� �
¼

RðtÞ

PðtÞ

( )
(20)

or in uncoupled form

½M� €q
� �
þ CðtÞ½ � _q

� �
þ KðtÞ½ � q

� �
þ Kl½ � lf g ¼ fRðtÞg, (21)

KT
l

� �
q
� �
¼ fPðtÞg. (22)

From Eq. (22) {q} is obtained as

q
� �
¼ KðtÞ½ �

�1
fRðtÞg � ½M� €q

� �
� CðtÞ½ � _q

� �
� Kl½ � lf g

� �
(23)

or

lf g ¼ KT
l KðtÞ�1Kl

� ��1
KT

l KðtÞ�1ðfRðtÞg � ½M� €q
� �
� CðtÞ½ � _q

� �
� fRðtÞgÞ � fPðtÞg

� �
(24)

or

½M� €q
� �
þ CðtÞ½ � _q

� �
þ KðtÞ½ � q

� �
þ KT

l KðtÞ�1Kl
� ��1

KT
l KðtÞ�1ðfRðtÞg � CðtÞ½ � _q

� �
� ½M� €q

� �
Þ � fPðtÞg

� �
¼ fRðtÞg ð25Þ

½M� I � Kl KT
l KðtÞ�1Kl

	 
�1
KT

l KðtÞ�1
h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½M��

€q
� �

þ CðtÞ½ � I � Kl KT
l KðtÞ�1Kl

	 
�1
KT

l KðtÞ�1
h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
CðtÞ½ ��

_q
� �
þ KðtÞ½ � q

� �

¼ fRðtÞg þ Kl KT
l KðtÞ�1Kl

	 
�1
fPðtÞg � Kl KT

l KðtÞ�1Kl
	 
�1

KT
l KðtÞ�1fRðtÞg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fRðtÞg�

ð26Þ

or

½M�� €q
� �
þ CðtÞ½ �

� _q
� �
þ KðtÞ½ � q

� �
¼ fRðtÞg�. (27)

Eq. (27) describes the periodic motion of the beam using the Lagrangian multiplier method for the fixed–
free configuration in Fig. 2(a). Eq. (27) is obtained by eliminating the Lagrangian multipliers from the original
system Eq. (20). In general, [K(t)] is positive definite and [K(t)]�1 exists for all types of periodic motion.
However, the existence of [K(t)]�1 cannot be ascertained for the free-free beam moving over supports
(Fig. 2(b)) since all essential conditions are time dependent, implying singularity associated with un-
constrained [K(t)] in Eq. (20). Moreover, reduction to preferred state-space form beginning from Eq. (20) is
computationally intensive, and may lead to ill-conditioning of system equations [29].

4.2. Penalty function method

With the aim of overcoming the limitations of Lagrange multiplier approach, penalty-based formulation is
summarized here which at the end does not result in ill-conditioned system equations. In the penalty method,
the displacement constraints (essential conditions) are imposed by means of penalty parameters, which are a
set of pre-determined constants (penalty numbers). The value of the penalty number (ap) determines the
accuracy of the obtained solution. Hence, in using the penalty-based technique, a penalty number of relatively
large magnitude apcmax[K(t)ii] is added to the ith diagonal element of [K(t)]. However, the matrices could be
ill-conditioned if the off-diagonal terms are multiplied by a large number. One of the important considerations
is the appropriate choice for the penalty number and this is arrived at by trials of various values for ap and
checking for convergence of solutions. The penalty method is quite effective since this does not need additional
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equations thereby preserving the bandwidth of stiffness matrix [K(t)]. The next section presents the penalty-
based technique to enforce essential conditions for the moving beam problem.

5. Penalty-based equations of motion

The equations of motion are derived from the variational expression to which the penalty parameter is
added. More generally, the penalty function is applied to minimize the penalized functional asY

p
¼
Y

p
þ ap

Z
GTG dO. (28)

The matrix [G] contains the constraint equations in domain O. ap is the penalty multiplier and as ap-N the
constraints are satisfied. The elegance of the penalty approach is that the constraints imposed in this way do
not introduce additional unknown variables as compared with the Lagrangian multiplier approach presented
in Ref. [18]. On the basis of the penalty approach, the finite element dynamic equations of motion is given as

½M� €q
� �
þ CðtÞ½ � _q

� �
þ Kf þ Ka þ ap KT

a Ka
	 
� �

q
� �
¼ fF ðtÞg, (29)

½M� €q
� �
þ CðtÞ½ � _q

� �
þ KðtÞ
� �

q
� �
¼ fF ðtÞg. (30)

Additionally, as in Eq. (29), the combined stiffness matrix is strongly positive definite in most cases [27]. This
may not be the case with the Lagrangian multiplier approach where the stiffness matrices are usually positive
semi-definite. However, it should be noted that with exceedingly large values for ap, the equation may
degenerate and could well run into numerical difficulties. There are several approaches to arrive at ap ranging
from trail and error [27] to hybrid methods by Pantano and Averill [30].

Eq. (30) describes the dynamics of moving beam problem including Rayleigh damping effects1 as given in
Eqs. (17)–(19). As can readily be seen from Eq. (30), the moving beam problem formulated using penalty
function approach introduces no additional unknown variables. Also, for the present problem, the matrix
[K(t)] in Eq. (30) is non-singular, positive-definite. The constraint matrix [Ka] is evaluated based on the
location of the supports. For the case of a moving beam with m degrees of freedom and two supports, the
constraint matrix ½KT

a � or [G
T] in Eq. (11) is 2�m and is given as

KT
a

� �
¼

0 � � � Hi
1 Hi

2 � � �H
i
m 0

H
j
1 H

j
2 Hj

m � � � 0 0 0

" #
. (31)

The constraint matrix in Eq. (31) is formed by evaluating the shape functions Hi
m and Hj

m, evaluated at the ith
and jth elements, respectively. The Eq. (31) is not a constant matrix and depending on the location of
supports, the matrix is updated for every time step.

6. Stability formulation

Clearly, Eq. (30) is a second-order differential equation with periodic coefficients. The stability conditions
are arrived on the basis of the Floquet theory and the Eq. (30) is represented in the first-order or state-space
form. Therefore rearranging Eq. (30),

M 0

0 M

� � _q

€q

( )
�

0 M

�KðtÞ �CðtÞ

" #
q

_q

( )
¼

0

F ðtÞ

( )
, (32)

_y
� �
� PfloðtÞ½ �fyg ¼ F ðtÞ. (33)
1In this case 5% damping is assumed in the first two modes of vibration. The first two natural frequencies of the beam with the supports

at initial position (0.375, 0.625m) are used to evaluate the damping matrix. The values of a0 and a1 are 1.5791 and 0.00405, respectively.
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6.1. Formulation based on the Floquet– Lyapunov theorem

The stability analysis based on Floquet theory follows that presented in Refs. [3,4] and only the essential
steps are shown here. ½Pflo� 2 <

n is a periodic matrix of order 2N� 2N of period T. All the 2N degrees of
freedom are required to completely specify the state of the entire system. To determine stability, the load
vector F(t) is set to zero. Floquet theorem states that the solution of Eq. (33) is expressed as

Y ðtÞ ¼ X ðtÞelpT , (34)

where Y(t) and X(t) are 2N� 1 column matrices. By selecting N independent conditions such that Y(0) ¼ I

solve Eq. (33) over a period T and assemble the 2N� 2N state transition matrix PT as

PðtÞ½ � ¼

y11 y12 � � � � � � � � � � � � y1n

y21 y22 � � � � � � � � � � � �

y31 y32 � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

yn1 yn2 � � � � � � � � � � � � ynn

2
666666666664

3
777777777775
. (35)

Each column of [PT], i.e. (y
11; y21 � � � yn1) represents a solution obtained by integrating Eq. (33) between (0, T)

for a specific initial condition. Evaluating the eigenvalues of the transition matrix

L ¼ elpT , (36)

elpT ¼
1

T
lnðlÞ, (37)

ap ¼
1

2T
ln l2real þ l2img

� �
, (38)

op ¼
1

T
tan�1

limg

lreal

� �
. (39)

The real part lreal is the growth of decay implying that any value greater than unity indicates instability. The
system defined by Eq. (33) or alternately, Eq. (30) is stable if and only if the spectral radius of the transition
matrix is less than unity. In the case of ordinary resonance, the spectrum of frequencies with indefinitely
increasing amplitudes (A) may build up but tends to be discrete. This is referred to as natural frequencies or
principal resonance frequencies.

Parametric resonance as seen in the moving beam problem depicts a different situation where the spectrum
is the union of smaller intervals. The length of these intervals is dependent on the amplitude of perturbation
and approaches zero as amplitude decreases. This means that these intervals are centered about certain
frequencies which are referred here as combination resonance frequencies or quasi-frequencies. For a classical
free vibration problem as seen in the case of a simply supported beam, the frequencies evaluated from the
generalized eigenvalue problem are called as natural frequencies. Ideally in the classical case, the stiffness mass
and damping matrices do not change with time. Therefore, the system possesses only one set of fundamental
frequencies.

However, there is a class of dynamics problems that give rise to the time-dependent boundary conditions.
Vibrations of band-saw blades, robot manipulators, are some examples. The problem of a beam oscillating
over two bilateral supports falls in this class. Following the definitions given by Jankovic [31], for a eigenvalue
problem in which frequencies change with time there are indeed no natural frequencies associated with the
system. Instead these are termed them as quasi-frequencies. In a problem involving rotating beams, Yu and
Young [15] also echo Jankovic’s view on time-dependent frequencies. Therefore, in this paper, all frequencies
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Table 1

Beam parameters [1]

Parameters Value

Beam stiffness (EI, Nm2) 1.0

Beam length (L, m) 1.0

Distance between supports (D, m) 0.25

Amplitude range (A, m) 0.002–0.05

Frequency (o, rad/s) 0–50
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related to the moving beam problem are referred to as quasi-frequencies or combination resonance frequencies
and the same for a fixed beam are principal resonance frequencies.
6.2. Additional instability regions and Hsu’s considerations

Based on the work by Hsu [32] and Buffinton and Kane [1], it is clear that the discrete A–o values obtained
by computing eigenvalues of transition matrix alone do not interpret dynamic stability in its entirety.
Therefore, the A–o pair obtained is discrete and the information that lies between, say, two values of o is lost.
In order to recover the lost information one may obtain the additional instability frequencies of the first
approximation [1,3,4,32]. Referring to the beam frequencies for fixed configuration (Table 1) as li and lj, the
combination frequencies are given as

lc ¼ li � lj

�� ��; ði; j ¼ 1 � � � nÞ. (40)

The instability frequencies determined by Eq. (40) is valid for small values of A, i.e., A51.0. Further
investigations by Buffinton and Kane [1] asserted the need for including more terms in Eq. (40) for lc, which
would cover a wider spectrum of combination frequencies. These additional instability regions could be
centered about a combination resonance frequency given as

lc ¼
1

m
lj � li

�� ��; ði; j ¼ 1; . . . ; n; m ¼ 2; . . . ;1Þ. (41)

When linear natural frequencies li and lj are commensurate, internal resonance can also occur when
lc ¼ |li7(lj7lk)|, (i, j, k ¼ 1yv). This even widens the instability spectrum as more combination frequencies
are found. With the assumption of some form of artificial damping being present, some of these additionally
found spectrums become weak and may not dominate in the instability charts. More detailed account on the
parametric resonances and identification of combination frequencies can be found in Ref. [5]. The stability
charts for various periodic motions of the beam are obtained and comparison of numerical results with known
previous research is presented next.
7. Results and discussion

This section presents the results on the dynamic stability characteristics as the beam moves sinusoidally over
supports. The analysis incorporates 5% damping, an aspect that is not considered in previous studies. The
basic beam parameters given in Table 1 are same as assumed by Buffinton and Kane [1], Lee [16] and Sreeram
[17]. Before presenting the instability results, the free vibration characteristics [principal resonance frequencies]
of the beam with symmetric overhang are determined using the penalty-based formulation.

This is useful in the additional stability results and also as a measure of convergence for the penalty-based
finite element formulation. Based on a convergence study (results not presented here), 4 elements with 3
internal node per element (4EL-3IN) is found sufficient to accurately solve the free vibration and also the
dynamic stability of the moving beam. For the stability analysis, a total of 4 elements with 3 internal nodes per
element are used for cases with and without damping. Table 2 shows the comparison with classical solution
and the error is with in 0.3%.
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Fig. 3. Instability during periodic motion of a free–free beam over two intermediate supports �X F ¼ ððL�DÞ=2Þ �A sinðotÞ:

D ¼ 0.25m; no damping [4EL-3IN].

Table 2

Natural frequencies of a beam with symmetric overhang

Mode number Classical (rad/s)

D ¼ 0.25m (a)

Penalty based (rad/s) % Error ja�bj
a
� 100%

D ¼ 0.25m (b) D ¼ 0.20m D ¼ 0.15m D ¼ 0.10m

1 16.246 16.246 14.762 12.934 11.356 —

2 20.771 20.776 20.054 20.607 21.655 0.024

3 117.93 117.93 102.40 85.739 73.023 —

4 136.07 136.15 132.55 135.56 139.86 0.058

5 247.47 247.81 282.78 245.37 207.66 0.137

6 386.11 386.34 357.32 382.27 392.22 0.059

7 422.58 423.69 452.45 482.48 416.84 0.262

8 702.44 703.86 632.46 654.85 677.43 0.202

9 799.47 800.41 798.61 815.20 789.32 0.117
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7.1. Instability predictions using Floquet theory

Having determined the principal resonance frequencies, the effects of change in amplitude of periodic
motion (A), distance between supports (D) and damping on the instability is determined. The Floquet
transition matrix [Pflo] is evaluated by integrating Eq. (33) between (0, T) with the initial conditions specified
by the 2N� 1 identity matrix. Here first-order implicit methods are used to numerically integrate the 2N� 1
system to obtain [Pflo]. The IMSL program DEVCRG is used to solve the generalized eigenproblem.

The instability regions dominate for o422 rad/s and D ¼ 0.25m. Fig. 3 shows the case with no damping
and the instability pattern compares well with that of Buffinton and Kane [1]. The region, which is highlighted
in Fig. 3 by an ellipse are the additional instability points obtained in this study. In the assumed modes
approach by Buffinton and Kane [1], only two modes were used to solve the stability problem. As witnessed in
the present study, using more degrees of freedom (4 elements and 3 internal nodes per element), actually causes
a slight shift to the left, which is clearly predicted by Buffinton and Kane [1]. Additional analysis of the
response for these two A–o pairs (0.048, 26) and (0.05, 26) is carried out and Fig. 11 reinforces the instability
predictions (using Floquet theory) in Fig. 3.
Fig. 4. Instability during periodic motion of a free–free beam over two intermediate supports �X F ¼ ððL�DÞ=2Þ � A sinðotÞ:

D ¼ 0.20m; no damping [4EL-3IN].
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It should be noted that the Figs. 3–10 represent instability points only for discrete A–o pairs and thus the
instability information between these points are not captured. Fig. 4 shows the instability chart for D ¼ 0.2m
and effects due to damping are not included. One of the main differences between Figs. 3 and 4 is that as D is
decreased, it is observed that new unstable regions are uncovered towards the left of Fig. 4. These regions were
not identified in Fig. 3. Subsequent results show the effect of further decreasing the distance between the
supports on the stability characteristics. For D ¼ 0.1m, the instability pattern in the frequency range 12 rad/s
(Fig. 6) is distinct compared to D ¼ 0.25m. In general, for all cases with Do0.25m more instability points are
found towards the lower frequencies, whereas the pattern is similar between higher frequencies in the range
20–50 rad/s.

It is observed that for any decrease in the value of D has an adverse effect on the stability. More instability
regions are uncovered as D is decreased. Some of the weaker instability spectrum are uncovered (by Hsu’s first
and higher approximations) since decreasing D results in the larger span of the beam unsupported.
Interestingly, consistent with Hsu’s predictions in Table 3, Figs. 3–6 indicate that some of the instability
regions are seen around the frequencies of first approximation. Since the A–o plot is discrete, only some of the
instability regions are confirmed using the Floquet theory. For example, max(l1+l2) in Tables 3 and 4

min
l1 þ l2ð Þ

k
; k ¼ 2

� �
Fig. 5. Instability during periodic motion of a free–free beam over two intermediate supports �X F ¼ ððL�DÞ=2Þ �A sinðotÞ:

D ¼ 0.15m; no damping [4EL-3IN].
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Fig. 6. Instability during periodic motion of a free–free beam over two intermediate supports �X F ¼ ððL�DÞ=2Þ � A sinðotÞ: D ¼ 0.1m;

no damping [4EL-3IN].
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shows that the instability frequencies range between 16.5 and 37.022 rad/s. Several discrete frequencies causing
instability in this range are confirmed in the predictions using Floquet’s theory as shown in Figs. 3–6. Table 4
also shows additional instability frequencies given by l1 � l2j j=k in the lower range, however, these regions
could not be identified using Floquet theory.

For all instability charts (Figs. 3–6) without damping the region towards higher frequencies do not
change significantly. For cases with damping included, the instability at lower frequency range disappears
whereas the influence of damping in the higher frequency range is minimal. For the damped case in Fig. 7, the
presence of damping seem to eliminate some of the weaker instability regions, particularly in the lower
frequency range, o ¼ 1–14 rad/s. However, the stronger instability regions in the vicinity of the first two
principal resonance frequencies of the stationary beam remain predominantly unchanged and can be seen
from Figs. 7–10.
7.2. Identification of additional instability regions

Based on Hsu’s approximations, the additional combination resonance frequencies are obtained
for a range of D and are shown in Table 3. The table lists the frequencies of the first approximations. For
the cases with decreasing values of D and damping inclusive, no known attempts have studied this in the
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Fig. 7. Instability during periodic motion of a free–free beam over two intermediate supports �X F ¼ ððL�DÞ=2Þ �A sinðotÞ:

D ¼ 0.25m; 5% damping [4EL-3IN].
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context of a beam moving over supports and hence this work identifies the effect of various factors that
determine instability.

For the union of the first two fundamental frequencies, the instability frequency in all the cases is centered
about 33 and 37 rad/s. It should be noted that primarily the instability regions are in the neighborhood of the
first few frequencies, i.e., modes 1 and 2. This is evident from Figs. 3–10 that instability regions are witnessed
in the vicinity of these fundamental frequencies. For D ¼ 0.25m, the instability is observed as far as
A ¼ 0.05m starting from a lower amplitude of 0.004m, though the stability charts do not capture this
region. This is expected since the second fundamental frequency is close to 21 rad/s (Table 2). For the case
when D ¼ 0.15m (Fig. 5), a combination frequency appear to center around 34 rad/s. This is consistent
with the predictions in Table 3. Depending on the type of nonlinearity in variation, the frequencies
can be identified in the vicinity of a value of combination frequency. For lower values of D, more unstable
frequencies are detected to the left region in Figs. 4–6. This is due to the lowering magnitude of the
first fundamental frequency. However, some of these initially dominant instability regions are seen to
fade away with the inclusion of damping. Hsu [32] as well as Buffinton and Kane [1] argued that the
combination frequencies obtained using k ¼ 1, 2 are the most significant. The instability chart results for
D ¼ 0.25m agree qualitatively with that of Buffinton and Kane [1], with some additional instability
frequencies newly identified.
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Fig. 8. Instability during periodic motion of a free–free beam over two intermediate supports �X F ¼ ððL�DÞ=2Þ � A sinðotÞ:

D ¼ 0.20m; 5% damping [4EL-3IN].
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7.3. Analysis of results

Floquet–Lyapunov theory has been used to predict the instability regions as shown by charts
(Figs. 3–10). These instability regions are discrete for A–o pairs and as predicted by Buffinton and
Kane [1]. Additional instability regions do exist and are determined by Hsu’s approximations. The
Floquet–Lyapunov theory is a specialized procedure particularly suited for large amplitude problems
as in the present case. As seen from the stability charts, the instability is predicted based on a combina-
tion of parameters such as D, A and o. However, the additional instability regions obtained using
Hsu’s approximations are based on a combination of first few frequencies of a symmetrically overhang
beam. The predictions based on Hsu’s approximations do not take into consideration the factors
such as application of a driving force on a specific point on the beam [22]. The effect of driving force point
on the stability characteristics is covered in Ref. [22] and is not addressed here. The effect of driving
force point on the response has been evaluated in Ref. [19] for repositional motions (as in forward
and reverse repositional motions). This suggests the instability determinations using Floquet’s theory
as well as those using the Hsu’s approximations are complementary to each other. Based on the Hsu’s
determinations, Floquet–Lypunov theory can be applied to determine if any specific A–o pairs would
result in instability.
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Fig. 9. Instability during periodic motion of a free–free beam over two intermediate supports �X F ¼ ððL�DÞ=2Þ �A sinðotÞ:

D ¼ 0.15m; 5% damping [4EL-3IN].
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8. Conclusions

A numerical formulation is presented here to address the dynamic stability of a beam moving sinusoidally
over supports. Two key aspects in this unique problem is the changing nature of the support locations and
necessity to enforce the essential conditions during the periodic motion, and reduction of dynamic equations
in the first-order state-space form. With the aim to over come the drawbacks of Lagrangian multipliers, the
penalty function method is adopted to enforce the time-dependent essential conditions. The penalty
formulation also results in a positive definite system. Floquet–Lyapunov theory is used to investigate the
instability during the periodic motion of the beam. Wherever possible, a comparison is drawn with known
previous research and for the stability case with D ¼ 0.25m and no damping included the instability patterns
compare well with that of Buffinton and Kane [1]. Other results with Do0.25m inclusive of damping have not
been reported by previous authors for the moving beam problem. This work successfully applied the penalty-
based formulation for a unique class of dynamics problems. The formulation presented here is less complex
compared to techniques based on assumed modes and numerically more approachable than Lagrangian
multipliers. Yet, other options for enforcing time-dependent essential conditions remain to be explored. One
possibility is to develop a finite element-based scheme where the element length and internal nodes are
generated dynamically such that at any given time the nodes are present at support locations to enforce the
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Fig. 10. Instability during periodic motion of a free–free beam over two intermediate supports �X F ¼ ððL�DÞ=2Þ � A sinðotÞ:

D ¼ 0.10m; 5% damping [4EL-3IN].

Fig. 11. Instability during periodic motion of a free–free beam over two intermediate supports �o ¼ 26 rad/s and A ¼ 0.048m, 0.05m.
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Table 3

Combination resonance frequencies of first approximation

Distance between the supports (D, m) Principal resonance frequencies (rad/s) Combination resonance frequencies lc, (rad/s)

l1 l2 l1+l2 |l1�l2|

0.25 16.246 20.776 37.022 4.530

0.20 14.762 20.054 34.817 5.291

0.15 12.934 20.606 33.540 7.672

0.10 11.356 21.655 33.011 10.29

Table 4

Additional instability frequencies of higher approximations

Distance between

supports (D, m)

Principal resonance

frequencies (rad/s)

Combination resonance frequencies based on Hsu’s approximations, lc (rad/s)

l1þl2
k

l1�l2j j
k

l1 l2 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 2 k ¼ 3 k ¼ 4

0.25 16.246 20.776 18.511 12.340 9.255 2.265 1.510 1.132

0.20 14.762 20.054 17.408 11.605 8.704 2.645 1.763 1.322

0.15 12.934 20.606 16.770 11.180 8.385 3.836 2.557 1.918

0.10 11.356 21.655 16.505 11.003 8.252 5.149 3.433 2.574
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essential conditions. Such schemes may be able to offer computational advantages over mixed formulations
especially when the number of supports is more. The feasibility of such a scheme in the context of a unique
class of problems in dynamics is an issue that needs to be explored in the future.
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